Impact of oceanic circulation on biological carbon storage in the ocean and atmospheric pCO2

نویسندگان

  • I. Marinov
  • A. Gnanadesikan
  • J. L. Sarmiento
  • J. R. Toggweiler
  • M. Follows
  • B. K. Mignone
چکیده

[1] We use both theory and ocean biogeochemistry models to examine the role of the soft-tissue biological pump in controlling atmospheric CO2. We demonstrate that atmospheric CO2 can be simply related to the amount of inorganic carbon stored in the ocean by the soft-tissue pump, which we term (OCSsoft). OCSsoft is linearly related to the inventory of remineralized nutrient, which in turn is just the total nutrient inventory minus the preformed nutrient inventory. In a system where total nutrient is conserved, atmospheric CO2 can thus be simply related to the global inventory of preformed nutrient. Previous model simulations have explored how changes in the surface concentration of nutrients in deepwater formation regions change the global preformed nutrient inventory. We show that changes in physical forcing such as winds, vertical mixing, and lateral mixing can shift the balance of deepwater formation between the North Atlantic (where preformed nutrients are low) and the Southern Ocean (where they are high). Such changes in physical forcing can thus drive large changes in atmospheric CO2, even with minimal changes in surface nutrient concentration. If Southern Ocean deepwater formation strengthens, the preformed nutrient inventory and thus atmospheric CO2 increase. An important consequence of these new insights is that the relationship between surface nutrient concentrations, biological export production, and atmospheric CO2 is more complex than previously predicted. Contrary to conventional wisdom, we show that OCSsoft can increase and atmospheric CO2 decrease, while surface nutrients show minimal change and export production decreases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

How does ocean biology affect atmospheric pCO2? Theory and models

[1] This paper examines the sensitivity of atmospheric pCO2 to changes in ocean biology that result in drawdown of nutrients at the ocean surface. We show that the global inventory of preformed nutrients is the key determinant of atmospheric pCO2 and the oceanic carbon storage due to the soft-tissue pump (OCSsoft). We develop a new theory showing that under conditions of perfect equilibrium bet...

متن کامل

Impact of atmospheric and terrestrial CO2 feedbacks on fertilization-induced marine carbon uptake

The sensitivity of oceanic CO2 uptake to alterations in the marine biological carbon pump, such as brought about by natural or purposeful ocean fertilization, has repeatedly been investigated by studies employing numerical biogeochemical ocean models. It is shown here that the results of such ocean-centered studies are very sensitive to the assumption made about the response of the carbon reser...

متن کامل

How does ocean biology affect atmospheric p CO 2 ? Theory and 1 Models

3 This paper examines the sensitivity of atmospheric pCO2 to changes in ocean biol4 ogy that result in drawdown of nutrients at the ocean surface. We show that the global 5 inventory of preformed nutrients is the key determinant of atmospheric pCO2 and the 6 oceanic carbon storage due to the soft tissue pump (OCSsoft). We develop a new the7 ory showing that under conditions of perfect equilibri...

متن کامل

Ocean-atmosphere partitioning of anthropogenic carbon dioxide on centennial timescales

[1] A theory for the ocean-atmosphere partitioning of anthropogenic carbon dioxide on centennial timescales is presented. The partial pressure of atmospheric CO2 (PCO2) is related to the external CO2 input (DSC) at air-sea equilibrium by: PCO2 = 280 ppm exp(DSC/[IA + IO/R]), where IA, IO, and R are the pre-industrial values of the atmospheric CO2 inventory, the oceanic dissolved inorganic carbo...

متن کامل

Oceanic Carbon Dioxide Uptake in a Model of Century-Scale Global Warming

In a model of ocean-atmosphere interaction that excluded biological processes, the oceanic uptake of atmospheric carbon dioxide (CO2) was substantially reduced in scenarios involving global warming relative to control scenarios. The primary reason for the reduced uptake was the weakening or collapse of the ocean thermohaline circulation. Such a large reduction in this ocean uptake would have a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008